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Abstract--A numerical study of fluid flow and heat transfer around periodic cylinder arrays under laminar 
cross flow conditions is presented. The investigation considers flow in sparse square and triangular arrays, 
with fluid fractions ranging from 0.80--0.99 and particle Reynolds numbers from about 3-160. Volume 
averaging of the microscopic flow field variables is used to ascertain the functional form of coefficients 
appearing in the macroscopic (porous media) equations. Frictional losses are shown to follow Darcy's 
law when the Darcian Reynolds number is of the order of one, while significant non-Darcy effects are 
seen at higher Reynolds numbers. The validity of the Forchheimer and Ergun correlations is shown to be 
suspect for flow in this highly porous media. Local thermodynamic equilibrium is relaxed in order to 
explore cylinder-to-fluid convective heat transfer. Power-law relationships for frictional losses and Nusselt 
number are shown to correlate well with detailed simulation results. © 1998 Elsevier Science Ltd. All 

rights reserved. 

1. INTRODUCTION 

The flow of fluids through cylinder arrays is important 
in a multitude of applications, such as filtration, bio- 
logical systems, and heat exchangers. Cross flow in 
periodic cylinder arrays has been the focus of a large 
number of investigations; review articles by Astr6m 
et al. [1] and Zukauskas [2, 3] list over 300 references 
related to flows in fibrous media and tube bundles, 
respectively. Despite this wealth of information, ques- 
tions remain concerning the quantitative nature of 
flow in high porosity cylinder arrays: treating the 
cylinder array as a porous media, can flow be con- 
sidered Darcian and, if not, can other simplifying pro- 
cedures be used to approximate the flow stream. For 
the case of flows in sparse, periodic arrays, where 
the spacing to diameter ratio c/d is greater than two, 
previous studies have investigated creeping flow con- 
ditions alone, such as Drummond and Tahir [4] and 
Sangani and Acrivos [5]. At higher Reynolds 
numbers, investigations of flows through cylinder 
arrays have been presented by Edwards et al. [6], 
Eidsath et al. [7], and Ghaddar [8], but these studies 

t Author to whom correspondence should be addressed. 

emphasized low porosity cases (less than 0.80). Inves- 
tigations of sparse cylinder arrays under the con- 
ditions of high Reynolds number are warranted for a 
number of applications. For example, Im and Ahlu- 
wahlia [9] examined highly porous fiber arrays to 
enhance internal heat transfer inside tubes. Also, Hen- 
dricks et al. [10] experimentally investigated the use 
of brush inserts, which can be represented as a cylinder 
array, within a complex cooling passage for the miti- 
gation of flow separation and augmentation of local 
heat transfer. For both of these applications, high 
porosities are desirable in order to minimize frictional 
losses. Moreover, because these situations feature 
developing or recirculating flows, there is a need to 
understand the flow resistance offered by sparse cyl- 
inder arrays in the transverse direction. Evaluation of 
the global-scale flow field in these circumstances thus 
involves microscopic modeling for the quantification 
of the arrays' flow resistance, which may then be recast 
in terms of porous media. This approach represents a 
valuable tool which may be used to assess the macro- 
scopic effects of various cylinder arrangement and 
porosity scenarios. 

Analysis of heat transfer between cylinders and fluid 
is also of importance in high porosity cylinder arrays. 
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NOMENCLATURE 

a specific surface area Rea particle Reynolds number 
A first Ergun constant Re /~  Darcian Reynolds number 
b modified friction factor correlation Sf interfacial momentum source term 

constant tensor 
B second Ergun constant T temperature 
c cylinder spacing Tr reference temperature 
c o specific heat u velocity vector 
C constant v velocity 
d cylinder diameter V representative elementary volume 
Da Darcy number (REV). 
f modified friction factor 
F Forchheimer constant 
g Nusselt number correlation Greek symbols 

constant 6m maximum percent relative difference 
h convective heat transfer coefficient e volume fraction 
k thermal conductivity /~ dynamic viscosity 
k~f effective thermal conductivity tensor p density 
K permeability • scalar or vector quantity. 
m modified friction factor correlation 

constant 
n modified friction factor correlation Subscripts and superscripts 

constant f fluid phase 
Nua Nusselt number fs fluid-solid interface 
p pressure k phase 
q" heat flux s solid phase 
r Nusselt number correlation constant * nondimensional quantity. 

Nusselt number correlations are available for flows 
within tube bundles [2, 3, 11], but there is little data 
for flows in sparse arrays. In some circumstances, 
e.g., nuclear systems [12, 13], the assumption of local 
thermodynamic equilibrium (LTE) must be relaxed. 
(The condition of  LTE presumes that all phases are 
isothermal within the representative elementary 
volume.) It is the combination of high porosity and 
significant internal heat generation, radiation, or tran- 
sient effects which render the LTE assumption invalid. 
The two previously mentioned investigations [9, 10] 
fall into this category. Considering flows in dense cyl- 
inder arrays, temperature differences between cyl- 
inders and bulk fluid are minimal since the cylinder is 
in close contact with the fluid. In sparse arrays, 
however, cylinders are isolated from much of the fluid 
and significant temperature gradients within the fluid 
space may exist. Only at a distance downstream does 
the bulk fluid temperature catch up with the cylinder 
temperature; an entrance length which depends on 
the flow field and initial temperature differences. 
Evaluation of Nusselt number for such flows is 
required to assess the LTE assumption (for example, 
see Amiri and Vafai [12]). 

The objective of the present study is to investigate 
laminar fluid flow and heat transfer transverse to 
square and triangular periodic arrays of cylinders with 

large spacing ratios. Specifically, fluid volume frac- 
tions ef range from 0.80-0.99, and the particle Rey- 
nolds numbers Rea (where d is the cylinder diameter) 
vary from approximately 3-160. The macroscopic 
effects of the cylinder arrays are assessed by con- 
sidering the arrays as a porous media, with coefficients 
appearing in the macroscopic equations determined 
by volume averaging of the microscopic flow field 
variables. Non-Darcian behavior is expected to play 
an important role due to the combination of large 
fluid volume fraction and high Reynolds number. 
Comparisons are made to the Ergun and Forchheimer 
relations to examine their validity in this porosity 
range. For  the case of heat transfer, LTE is not 
assumed, and both constant wall temperature and 
constant wall heat flux conditions are investigated. 

2. MICROSCOPIC AND MACROSCOPIC FLOW 
EQUATIONS 

Before the cylinder array problem is introduced, it 
is instructive to summarize the development of the 
porous media flow equations via examination of the 
microscopic equations. Similar to the Reynolds aver- 
aging concept in the analysis of turbulent flow, volume 
averaging is used to simplify the complexities of flow 
in porous media [14]. The volume average of any 
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scalar or vector quantity ~k, associated with phase k, 
is defined as 

( ~ k > = ~  ~kdV (1) 

where V is the representative elementary volume 
(REV). (~k is zero in regions not occupied by phase 
k.) The intrinsic volume average is defined as 

and may be related to the total volume average by 
ek(~k> k = (~k>, where ~k is the volume fraction of 
phase k. The porous media, or macroscopic, flow 
equations are derived by taking the volume average of 
the microscopic conservation equations of continuity, 
momentum, and energy : 

V" u =- 0 (3) 

pu" Vu = - V p + g V 2 u  (4) 

pcpV" Tu = k V  ~ T. (5) 

In the above expressions, u is the velocity vector, p is 
the density, p is the pressure, ~t is the dynamic 
viscosity, Cp is the specific heat, and k is the thermal 
conductivity. The system described here consists of 
two phases, a single phase fluid and solid, each having 
constant properties and spatially uniform volume 
fractions; the solid is stationary with respect to the 
external reference frame ; and the flow is laminar and 
steady. 

After volume averaging, the macroscopic governing 
equations for the fluid phase are [12, 14, 15] 

V" <ur> = 0 (6) 

e~<uf>'V(uf> = -V/-,pr>r+ gfVZ<uf>-Sr (7) 
,~f 

prcp,fV" ( Tr>r(ur> = kefsfV 2 < Tr> f 

+hf~af~(<T~>~-<Tf> f) (8) 

where Sf is the interfacial momentum source term 
t e n s o r ,  kef the effective fluid thermal conductivity 
tensor, hr~ the interfacial convection coefficient, and 
af~ the specific surface area of the interface. The treat- 
ment of Sf and hr~ for periodic cylinder arrays in cross 
flow is the focus of this study; see Bauer [16] for the 
treatment of conductivity in fibrous media. 

The primary difficulty encountered in applying the 
macroscopic equations to a given problem is the speci- 
fication of  these additional source terms arising from 
the volume averaging operation (analogous to the 
closure problem in turbulence [17]). In considering 
the macroscopic momentum equation with negligible 
convection and diffusion, the pressure gradient 
--V(,pr> f of the porous media for uni-directional flow 

(and hence each component of Sf) can be determined 
either by the Ergun equation [18], 

- -  V @ f >  f ~- A - -  
(1-~0  ~ d~ 

8f p < v f >  " [ Q ) f >  I 
+ B - -  (9) 

(1 -~r) 3 dp 

or by the Forchheimer equation [12, 14, 19], 

_V<pf> f = ,U(Vr> F p  + ~-~<vf>. [<v~>l. (10) 
K 

In these equations, vr is the fluid velocity in the 
streamwise direction, A and B are the first and second 
Ergun coefficients, F is  the Forchheimer term, and Kis 
the intrinsic or Darcian permeability (defined below). 
Although these two expressions have a slightly differ- 
ent form, each employs one term to handle low vel- 
ocity situations (creeping flow) and a second term to 
include the effects of turbulence and/or inertia (hence 
the appearance of velocity squared). For  cases where 
the fluid velocity is sufficiently small, the well-known 
Darcy's law [14, 19] is recovered from equations (9) 
and (10), i.e. 

_ v<p~>~ = ~<v~> K ( l l )  

The interfacial convection coefficient must be specified 
if the LTE assumption is relaxed, and its value may 
be determined from application of Newton's law of 
cooling, 

q~ = hfs(Ts - Tr) (12) 

where q~'is the convective heat flux and Tr the reference 
temperature. 

Coefficients appearing in the Ergun and For- 
chheimer relationships, along with the specification of 
the heat transfer coefficient, traditionally have been 
determined by least squares fitting of data from flow 
experiments. More recently, numerical solutions of 
the microscopic flow field have been used to determine 
these macroscopic coefficients, as reported in a num- 
ber of investigations for flows in various cylinder 
arrays [4-8]. This technique is adopted in the present 
study, which may be stated as follows : (1) determine 
the flow field via the microscopic equations ; (2) com- 
pute the volume average of the flow field variables 
within the REV ; and (3) evaluate the resulting macro- 
scopic source terms as a function of array type, fluid 
volume fraction, and flow condition. 

3. PROBLEM DESCRIPTION AND NUMERICAL 
APPROACH 

Figure 1 shows square and triangular arrays of cyl- 
inders with diameter d and spacing c, with the flow 
oriented in the y coordinate direction. (Other flow 
directions are possible, of course, but the present 
analysis is limited to only a single transverse 
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Fig. 1. Computational grids for cylinder arrays: (a) square array, er = 0.80; (b) square array, ~f = 0.99; 

(c) triangular array, er = 0.80 ; (d) triangular array, ef = 0.99. 

direction.) The cylinder spacing is fixed by speci- 
fication of  the fluid volume fraction ej~ where 

e,.= 1 4\d]  (13) 

for the square array, and 

ef = 1 -  2 x f ~ d ]  (14) 

for the triangular array. For  the present study, er 
ranges from 0.80 to 0.99 for each array, corresponding 

to c/drat ios  from about  two to ten. If entrance effects 
are negligible, which is a reasonable assumption for a 
cylinder array with a large number of  rows, periodicity 
reduces the problem to the determination of  velocity, 
pressure, and temperature fields in the fluid sur- 
rounding a solitary cylinder within the array. These 
flow domains are shown in Fig. 1 with dashed lines, 
which are taken to be the REV for volume averaging 
purposes (note that symmetry conditions are invoked 
for the square array). 

A finite volume-based numerical procedure, as 
described by Thakur  et al. [20] and Shyy [21], is uti- 
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Table 1. Grid sensitivity comparison for square array, ef = 0.99, - A p  = 1.0 N m -2 
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log~0 normalized residuals : 
Grid size Red If m] (%) x momentum y momentum Continuity 

21×63 57.9 1.7 --5.3 --4.8 --5.3 
41×63 58.3 1.0 --5,4 --4.6 --5.3 
21x123 58.8 0.2 --5.0 --4.5 --5.0 
41x123 58.9 - -  --5,1 --4.2 --5.0 

lized to solve the microscopic equations (3)-(5) in 
curvilinear coordinates for two-dimensional flow. 
This procedure is based on the S IMPLE algorithm 
[22] extended to curvilinear coordinates and employ- 
ing mixed cartesian and contravariant velocity com- 
ponents, with a second order upwinding arrangement 
for convective terms. No-slip, no penetration bound- 
ary conditions are imposed at the cylinder surface, 
along with either constant temperature or constant 
heat flux boundary conditions. The inlet and outlet 
are periodic, with pressure difference - Ap driving the 
flow. Treatment  of  the periodic boundary conditions 
in the context of  a finite volume procedure is discussed 
in Patankar et al. [23]. Fluid surfaces not  in contact  
with the cylinder are taken as symmetric and adia- 
batic. 

The overall dimensions of  the computat ional  array 
are fixed by specifying ef and the cylinder diameter, 
which is 1.50 × 10 -4 m (this is a representative size for 
a cylindrical fiber or wire) ; the cylinder length is set 
to unity (1.0 m). Figure 1 illustrates the typical grids 
used for square and triangular arrays for the extreme 
~f values, 0.80 and 0.99. A 21 x 63 grid is selected for 
the square array, while a 31 × 63 grid is chosen for the 
triangular array, which has a smaller aspect ratio. The 
grids are constructed to maximize the number of  cells 
adjacent to solid surfaces, where sharp gradients in 
fluid velocity and temperature are expected. Over- 
lapping grid cells are present at periodic inlet and 
outlet faces, and care is taken to ensure symmetric 
about  the lateral centerline of  the domain. Grid sen- 
sitivity was investigated for the square array with 
~f = 0.99 under high Reynolds number flow. Table 1 
shows a comparison of  the computed particle Rey- 
nolds number resulting from the pressure difference 
- A p =  1.0 N m -2 for four different grid sizes: 
21 x63,  41 x63,  21× 123, and 4 1 x  123. Since the 
maximum relative difference 6m between the finest grid 
and the coarser grid results is less than 2%, the solu- 
tion was considered to be grid independent ; hence the 
coarsest grid was selected to minimize computat ional  
effort. Normalized residuals are also included in Table 
1, which are typical values obtained for all other cases. 
The solution of  the continuity and momentum equa- 
tions for each array required 4-6 h of  C P U  time on a 
middle-end workstation (DEC 3000 Model  600), with 
about  30 min for the solution of  the energy equation. 

Physical properties of  the fluid are of  air at 300 K : 
p = 1.23 kg m -3 ; # = 1.79 x 10 -5 N-s m -z ; Cp = 1006 

J kg -K-~ ;  and k = 0.025 W m-K-~  [24]. Al though 
any other fluid could have been selected, air is chosen 
to be representative of  a gas flow (Prandtl number 
dependency is not  considered in this work). 

4. RESULTS: FLUID FLOW 

To illustrate the qualitative features of  the flow 
field, streamline plots are shown in Fig. 2 for the 
square array and Fig. 3 for the triangular array under 
low and high flow rate conditions. For  small particle 
Reynolds numbers Rea, where 

p<vf>d 
Red -- (15) 

# 

a Stokes type of  flow field can be seen, with little or 
no vortex generation behind the cylinders. As Red 
increases, the vortex behind the cylinder grows and 
extends up to the front of  the downstream cylinder 
where er = 0.80. 

The presentation of  the quantitative flow features 
now follows by treating Darcian and non-Darcian 
flow regimes individually. 

4.1. Darc&n flow regime 
The Darcian Reynolds number,  Re/~, is often used 

as a criteria for determining the regime of flow through 
porous media : 

P<Vf>N~ (16) Re',/K - ,u 

For  RexFg < (9(0, Darcian flow holds [14], and the 
pressure drop in the flow direction is specified by equa- 
tion (11). Hence, if  the pressure drop and volume 
averaged streamwise velocity are known, the per- 
meability K may be computed for a given array pro- 
vided that Re~K is sufficiently small. In order to com- 
pute K from the present results, it is necessary to 
compute the pressure drop corresponding to 
Re /~  = 0 by linear extrapolation of  the data, as the 
numerical procedure cannot handle flows at very low 
Reynolds numbers. To illustrate, Darcy 's  law may be 
written as 

K 
(17) 
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I 
(a) (b) 

(c) (d) 
Fig. 2. Streamline plots for square array: (a) ef = 0.80, Red = 3.26 (Re,f~ = 0.904) ; (b) ef = 0.80, Red = 161 

( R e ~  = 44.6) ; (c) ef = 0.99, Red = 4.24 ( R e ~  = 13.3) ; (d) er =" 0.99, Rea = 105 (Re,/' ~ = 331). 

where the left-hand side of  the above expression is 
defined as the nondimensional  pressure gradient 
( - V p * ) .  The permeability for a given fluid volume 
fraction is found by computing - Vp* for data points 
1 and 2 at low Reynolds number, and then ex- 
trapolating to Rea = 0 : 

(-Vp*)2-(-Vp*)~ (-Vp*),-(-Vp*)o 
- ( 1 8 )  

(Rea) 2 -- (Rej) i (Red) ~ -- 0 

Once ( -Vp*)0  is computed,  the permeability may be 
found from equation (17). Figure 4 shows a plot of  
the Darcy number,  Da = K i d  2 vs. the fluid volume 
fraction for both array types. A comparison is made 
to the results of  Drummond  and Tahir  [4], who con- 
ducted a Stokes flow analysis to obtain closed-form 
solutions for the permeability of  various arrays (simi- 
lar findings can be found in Sangani and Acrivos [5]). 

Since the fluid volume fraction is large, little difference 
can be seen between square and triangular array 
results. There is excellent agreement (less than 5% 
relative difference) between the current study and the 
Stokes flow solutions, which shows that the numerical 
procedure is accurate for the low Reynolds number 
range. Another  implication of  this comparison is that 
the present numerical procedure, which has significant 
numerical dissipation in the creeping flow regime, can 
be used to compute permeability to a high degree of  
accuracy. Thus, future studies of  flows in other types 
of  porous media could use computational  fluid 
dynamics (CFD) analysis to determine permeability. 

4.2. Non-Darcian f low regime 
To evaluate the validity of  the present results at 

higher Reynolds number, frictional losses in one row 
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ti i/ 
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i 

(c) (d) 
Fig. 3. Streamline plots for triangular array : (a) ef = 0.80, Red = 3.01 (Re j~ = 0.849) ; (b) et = 0.80, 
Red=71.5 (Re/~=20.1); (c) el=0.99, Red=3.89 (RelY= 12.4); (d) ~f=0.99, Red=86.6 

(Rex/~ = 227). 

of a periodic array are compared against those 
reported in the literature. Figure 5 shows the non- 
dimensional pressure gradient vs. the particle Rey- 
nolds number for the square array with ef = 0.80. Two 
additional investigations, which are finite element- 
based numerical studies, are used for comparison: 
Edwards et al. [6] ; and Ghaddar [8]. (Studies where 
Ef > 0.80 could not be found in the literature for the 
Reynolds numbers considered.) There is good agree- 
ment between the present study and the other numeri- 
cal results, especially at low Reynolds number. The 
larger difference at higher Reynolds number can be 
partly explained by unsteady effects. Ghaddar [8] per- 
formed a transient analysis and found inherently 
unsteady flows to exist for Red > 150 for this array. 
However, the relative percent difference in -Vp* 

between the present study and Ghaddar [8] (about 
10%) suggests that unsteady effects are only slightly 
significant here. 

Prior to the presentation of results for the full range 
of ~f studied, the functional form of the pressure losses 
in porous media is considered in more detail. The 
pressure gradient - V ( p f )  f for a given array can, in 
principle, be written as a function of the following 
variables: p, #, (vf), d, and K. The Buckingham-Pi 
theorem may be used to determine the non-dimen- 
sional groups that characterize this relationship: the 
Darcian Reynolds number R e ~ ,  the Darcy number 
Da, and the modified friction factor f ,  where 

f '  = - V ( p f )  f w/K (19) 
p(vf)'[(Vf)l" 
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Fig. 4. Darcy number vs. fluid volume fraction for square and triangular arrays. 
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Fig, 5. Nondimensional pressure gradient vs. particle Reynolds number for square array, E r = 0.80. 

Both the Ergun and Forchheimer relations can be 
rearranged to display the dependence of the frictional 
losses on these non-dimensional parameters. For 
example, the Forchheimer equation may alternatively 
be written as [14] 

f ' =  1/Rex/~+F. (20) 

(Ergun's equation may be written similarly.) 
To examine the validity of the Ergun and For- 

chheimer relations, the modified friction factor is plot- 
ted vs. the Darcian Reynolds number for the square 
array and the triangular arrays in Fig. 6 on a log- 
arithmic scale. Both Darcy's law and the Forchheimer 
relation are shown, with F = 0.00251 for the square 
array and 0.00412 for the triangular array. Several 
important features can be seen in this figure. First, the 

data reduces to the Darcy limit as Re,f~ approaches 

unity, as expected. However, the frictional losses 
clearly do not follow the Ergun and Forchheimer 
relations as the Darcian Reynolds number increases. 
The maximum relative difference between the present 
data and the Forchheimer relation is 25% for the 
square array and 66% for the triangular array. (It 
should be noted that the values for F were determined 
from the highest R e ~  for each array type, since a 
linear regression yielded relative deviations well over 
100%.) This finding calls into question the validity of 
the Forchheimer and Ergun expressions for flows in 
porous media composed of cylinder arrays. Previous 
studies [25] have shown that, for certain classes of 
porous media, the modified friction factor showed 
little dependence upon the fluid volume fraction. Cur- 
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Fig. 6. Modified friction factor vs. Darcian Reynolds number : (a) square array ; (b) triangular array. 

rent  results show tha t  ef has  a significant influence 
upon  f ,  as shown by the scatter  in the data  points  in 
this figure. To account  for the fluid volume fract ion 
dependency,  a power-law relat ionship is proposed as 
the funct ional  form o f f  for Rex/~ > l : 

f '  = b E i - " R ~ .  (21) 

Figure 7 il lustrates the fidelity of  the above  corre la t ion 
for square  and  t r iangular  arrays,  respectively, by plot- 

t ing f 'e~ vs. Rev~ .  The da ta  matches  the corre la t ion 

to within a m a x i m u m  relative difference of  6.5% for 
the square  array and  4.5% for the t r iangular  array. 
Values of  the corre la t ion  cons tan ts  are as follows: 
square  array,  b = 0.862, m = - 0 . 8 8 2 ,  and  n = 0.555 ; 
t r iangular  array,  b - -  0.815, m = - 0 . 8 3 6 ,  and  
n = 1.21. The  larger value o f n  for the t r iangular  array 
suggests a s t ronger  dependence on  fluid volume frac- 
tion, explained by the more  to r tuous  flow pa th  of  this 
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(b) 
Fig. 7. Modified friction factor as a function of fluid volume fraction, vs. Darcian Reynolds number : (a) 

square array ; (b) triangular array. 

array type. For  the triangular array, the tortuosity of  
the ftow path is greatly exacerbated by a decrease in 
porosity, while a more open flow area exists for the 
square array. Hence, J '  shows more sensitivity to 
the fluid volume fraction for the triangular array. 
Both arrays show comparable dependency upon 
R e , / [ ,  although the modified friction factor is higher 

for the triangular array for the reasons outlined 
above. 

5. R E S U L T S :  H E A T  T R A N S F E R  

Heat  transfer effects are seen in Figs. 8 and 9, which 
show isotherms for square and triangular arrays con- 
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Fig. 8. Isotherm plots for square array, <T~) ~ = 300 K: (a) ~f= 0.80, Red= 3.26 (Re,~ = 0.904); 
(b) sf = 0.80, Red = 161 (Rex/~ = 44.6) ; (c) ef = 0.99, Red = 4.24 (Re~ = 13.3) ; (d) sf = 0.99, Red = 105 

(Re/~ = 331). 

sidering extreme values of  fluid volume fract ion and  
Reynolds  number .  The  isotherms display symmetric  
shapes for low Reynolds  n u m b e r  flows, showing the 
dominance  of  conduc t ion  over convection.  At  high 
Reynolds  numbers ,  i sotherms in open flow areas are 
aligned parallel  to the y-axis, with more  complicated 
pa t te rns  appear ing  in the recirculat ion zones. Also, 
much  sharper  tempera ture  gradients  appear  closer to 
the cylinders as the Reynolds  n u m b e r  increases. 

To evaluate convective heat  transfer,  the Nussel t  
n u m b e r  Nuu is defined as 

hfsd 
Nud- k "  (22) 

The  convective heat  t ransfer  coefficient hf~ is deter- 
mined f rom equa t ion  (12), wi th  T s - - ( T ~ )  ~ and  
Tr = ( T  f) ~. (It should  be noted  tha t  Tr is con-  
vent ional ly t aken  as the fluid bulk  tempera ture  ; how- 
ever, (T f )  f is chosen for convenience.  Calculat ions  of  
the Nussel t  n u m b e r  based on the bulk  tempera ture  
revealed only small  differences.) Fo r  the case of  con- 
s tan t  wall temperature ,  q~' is found  via an  energy bal- 
ance between the inlet and  outlet  of  the fluid domain  
and  the cylinder walls. Figure 10 shows the Nussel t  
n u m b e r  vs. the particle Reynolds  n u m b e r  for b o t h  
array types ( (Ts)  s = 300 K for cons tan t  wall tem- 
perature,  and  q" = 2.12 x 10 -4 W m -2 for cons tan t  
wall heat  flux). The fluid volume fract ion clearly has  
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a strong influence on the degree of  heat transfer, as 
NUd rises when the cylinders are closer to each other. 
There is also a marked dependency upon the wall 
heating condition, with the constant wall heat flux 
condit ion exhibiting Nusselt  numbers that are about  
20% higher than the constant wall temperature case. 
A power-law correlation is used as a fit for the data, 

NUd = y R~. (23) 

This correlation is considered to be a first approxi- 
mation, as the results show that the values of  
coefficients # and r are not  independent of  Reu. Table 
2 lists the coefficients for the square and triangular 

arrays as a function of  the fluid volume fraction for 
each heating condition (~m is the maximum relative 
difference). 

The relatively moderate values of  the Nusselt num- 
ber suggest that departure from LTE may be sig- 
nificant in those cases where non-equilibrium effects 
are suspected. However,  it is not possible to generally 
assess the importance of  the LTE assumption from 
the Nusselt number alone, since the interfacial area afs 
can attain very large values even for high porosities. 
Macroscopic analyses similar to the investigation of 
Amiri  and Vafai [12], along with the Nusselt number 
correlations presented herein, can be used to assess 
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Fig. 10, Nusselt number vs. particle Reynolds number : (a) square array ; (b) triangular array. 

LTE for flows in porous media consisting of  cylinder 
arrays. 

Finally, it should be noted that an attempt was 
made to utilize x / ~  as a length scale of  heat transfer 
in order to determine if  the data could be represented 
as a function of  the Darcian Reynolds number or as 
a Nusselt number based on x/K.  While application of  
the Buckingham-Pi  theorem to heat  transfer reveals 

dependency o n  dimensionless groups Red, Nbld, and 
Da, there is no guarantee that the functional relation- 
ship is analogous to that found for the modified fric- 
tion factor. This at tempt yielded no conclusive evi- 
dence of  universal behavior in the Nusselt number as 
a function of  the fluid volume fraction. Hence, the 
results have been presented in the more traditional 
fashion with the cylinder diameter as the length scale. 
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Table 2. Correlation values for Nusselt number : (a) square array ; (b) triangular array 

T~=C q~=C 
er g r 6m (%) g r 16,.1 (%) 

(a) 
0.80 2.50 0.170 1.4 3.05 OA91 3.8 
0.82 2.38 0.166 1.0 2.78 0.192 3.1 
0.84 2.21 O. 169 1.2 2.47 0.204 2.3 
0.86 2.04 0.171 0.8 2.19 0.212 1.4 
0.88 1.87 0.174 0.9 2.03 0.210 2.2 
0.90 1.73 0.172 0.7 1.79 0.218 1.9 
0.92 1.60 0.167 0.4 1.57 0.221 1.0 
0.94 1.46 O. 162 0.6 1.37 0.227 0.7 
0.96 1.35 0.147 0.2 1.25 0.207 0.9 
0.98 1.18 0.138 0.3 1.13 0.193 1.7 
0.99 1.07 0.140 0.5 1.08 0.177 1.2 

(b) 
0.80 2.12 0.286 3.0 3.11 0.226 3. l 
0.82 2.12 0.268 1.9 2.87 0.226 1.8 
0.84 2.10 0.245 1.4 2.70 0.221 1.1 
0.86 2.06 0.225 1.0 2.46 0.224 1.2 
0.88 2.00 0.209 0.7 2.16 0.256 2.2 
0.90 1.89 0.196 1.2 2.31 0.189 0.7 
0.92 1.81 0.176 0.5 2.17 0.175 0.2 
0.94 1.68 0.162 0.4 2.01 0.163 0.8 
0.96 1.54 0.146 0.3 1.80 0.154 0.7 
0.98 1.34 0.143 1.2 1.56 0.150 1.2 
0.99 1.21 0.138 0.8 1.35 0.150 0.6 

6. SUMMARY AND CONCLUSIONS 

Fric t ional  losses in sparse, periodic arrays  follow 
Darcy ' s  law when the Darc ian  Reynolds  n u m b e r  is of  
the order  one, but  show significant non -Darcy  effects 
as the Reynolds  n u m b e r  increases. Compar i son  to 
previous numerical  studies in square  arrays  reveal few 
differences, especially at  low Reynolds  number .  The 
modified friction factor  is shown to follow a power- 
law funct ion of  Darc ian  Reynolds  n u m b e r  ra ther  than  
the Ergun  or Forchhe imer  relations,  with s t rong 
dependency on  the fluid volume fraction. Nussel t  
n u m b e r  correlat ions utilizing the cylinder d iameter  
as the length scale are also derived via a power- law 
relat ionship.  Findings  f rom the current  invest igat ion 
suggest tha t  addi t ional  studies are meri ted for flows in 
highly porous  media,  owing to the repor ted depar ture  
f rom the Ergun  and  Frochhe imer  relations. In part icu- 
lar, invest igat ions should be conducted  which consider  
t rans i t ional  and /o r  tu rbu len t  flows, since their  
existence will greatly impact  the flow field at  higher  
Reynolds  number .  
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